With the current drought and diminishing water supply, considerable thought should be expended toward reducing the volume of water used for landscaping. Even without drought conditions, the sole water source for the Rio Grande "Valley" consists of the Rio Grande flow. This already over-allocated source cannot continue to supply an ever increasing population. Water conservation, wherever possible, remains the only solution available.

Water conservation can result from proper plant selection, watering practices, water retention, and soil preparation. Gardeners and landscapers can begin by selecting native plants — trees, shrubs, flowering herbs, and grasses — which have evolved with and are adapted to the local climate. Native plants naturally tolerate the climatic fluctuations and extremes within their ranges. Some supplemental watering may enhance their appearance under drought conditions, but the plants will survive with much less water than most ill-adapted exotics. Soil type and shade requirements still need to the met.

Native plants have adapted to the temperature regime they have developed under for centuries. Although a once-in-a-century freeze may impact some as severely as last December's Christmas freeze, the native plants come back. Species such as Tepeguaje and Black Mimosa froze back to the ground; Black Mimosa has regrown to full size and reproduced, while Tepeguaje has grown leaves as high as three meters and some have flowered. Native plants have developed mechanisms and defenses to avoid water loss. Look at some of the native legumes in the early afternoon and see how the leaves are folded. Others have waxy, thicker leaves, green trunks, or leaf loss during drought. Small leaf size reduces water loss; compare our Cedar Elm and Granjeno to northern, more mesic-adapted relatives.

Newly developed irrigation systems with timers, underground application, and drip irrigation avoid spraying scarce water through the air or allowing it to lie on the ground surface to maximize evaporation. If sprinkling must remain the only watering technique available for your yard, water during the cooler hours to reduce evaporation.

Banking soil to provide water flow barriers around the perimeter of the yard retains the rainfall or sprinkled water on the yard. If applied water flows away, it cannot benefit the vegetation and further taxes the drainage and sewage treatment systems.

Insulating the soil surface reduces water evaporation and lowers soil temperature. Leaves naturally accumulate under the tree canopy in woodlands and brushlands, but gardeners rake and haul away leaves and cuttings. Leaves, grass clippings, hay, straw, sheets of plastic, or newspapers can be used as mulches. Mulches help keep a crust from forming on the soil surface and reduce autointroduction of natives with low desirability.

Properly prepared, the soil will be loosened and organic material added to hold more and release moisture longer. A compost pile can provide the organic material and save the cost of hauling it away.

Water conservation can save much ever scarcer water. Significant water conservation methods include selection of adapted native plants, improving watering techniques, retention of rainfall, utilization of mulches, and proper preparation of the soil.

—JI.
Buffalograss: A Native, Low-Maintenance Turf

Want a yard you never need to mow, water, or fertilize? Though this may sound impossible, there is a grass that comes close to making this dream a reality. No, it’s not a new genetically-engineered grass bred in a laboratory. This wonder grass is none other than buffalograss, a native turfgrass that evolved on the prairie grasslands of North America, and is gaining popularity for use around the home.

Because buffalograss is a native plant, it has evolved under the Texas conditions of hot, dry summers and cold, freezing winters. This means it will survive in your yard no matter what the weather, although it will not tolerate any shade.

Buffalograss is not the same dark green color as the more typical lawn grasses. It is a little lighter green in color with a bit of a blue cast to it. The leaf blades are fairly narrow, so the turf takes on an airy appearance if not mowed.

Buffalograss is established from seed. It should be sown during the same period that Bermuda grass is seeded, which is from about April 15 to Sept. 1 in North Texas, with sowing starting a few weeks earlier in the spring and continuing a few weeks later in the fall in southern Texas.

Because buffalograss seed is generally expensive, the seeding rate that is suggested will not produce enough plants to create a dense lawn right away. The grass’s ability to spread by runners will fill in the gaps, however. Since the seed is hard and is generally slow in germinating, try to use seed that has been treated with a fungicide.

While buffalograss will survive in most sunny locations completely without any fertilizer or irrigation, a timely minimal application of either should produce a denser stand.

Water should only be applied when there is a danger of the grass turning brown, which it does as a survival technique to make it through long hot dry periods. It is not dead and will quickly green up again when watered.

Since buffalograss does not usually grow over 4 or 5 inches high, you won’t have to mow it at all. Should you decide to mow it, however, never cut it lower than 2 inches.

For a list of sources for buffalograss seed, send a self-addressed, stamped, business-sized envelope to: Texas Gardener, Dept. BG, P.O. Box 9005, Waco, TX 76714.

"SELECTED NATIVE GRASSES OF THE RIO GRANDE VALLEY" — compiled for discussion at the August 17, 1984 Native Plant Project meeting. Selector is anonymous.

1. Buffalograss, Buchloë dactyloides (Nutt.) Engelm.; native, stoloniferous perennial, 4-30 cm tall; an extremely valuable forage grass.
2. Buffalo Grass, Cenchrus ciliaris L.; native of India, tufted perennial, to 100 cm tall; introduced as forage grass.
3. Bermudagrass, Pata de Gallo, Cynodon dactylon (L.) Pers.; native of Eurasia, stoloniferous perennial, 10-40 (100) cm tall; a forage and lawn grass.
4. Silver Beardgrass, Silver Bluegrass, Bothriochloa saccharioides (Swartz) Rydb.
5. Pink Pappusgrass, Pappochloa bicolor Schreb.; native, tufted perennial, 30-100.
6. Arizona Cottontop, Trichachne californica (Benth.) Chase; wiry perennial, 35-110 cm tall, native; ex. Digitaria californica of older books.
7. Texas Bristlegrass, Setaria texana Emery; native, tufted perennial, 10-70 cm.
8. Southwestern Bristlegrass, Setaria scheelei (Steud.) Hitchcock; native, loosely tufted, perennial, 30-120 cm tall; "most abundant grass on Santa Ana National Wildlife Refuge.
9. Four-flowered Trichloris, Chloris pluriflora (Fourn.); native of Africa, tufted perennial, 40-150 cm.
10. Switchgrass, Panicum virgatum L. native, rhizomatous perennial, 100-300 cm tall.
11. Sacahuista, Gulf Cordgrass, Spartina spinacea (Trin.) Merr.; native, tufted perennial, 50-200 cm tall; young shoots emerging after fires are excellent forage, but older shoots are too tough.

Source Literature:
Family Fabaceae (Leguminosae)
Legume Family

Wright's Acacia
Wright's Catclaw
Uña de Gato

Acacia wrightii Benth.

FIELD IDENTIFICATION. Spiny shrub, or sometimes a tree attaining a height of 30 ft., and to 1 ft. in diameter. The glabrous, spreading branches form a wide irregular-shaped crown.

FLOWERS. March–May, or at odd times after rains, in cylindric spikes ¾–1½ in. long which are sometimes interrupted; peduncles slender, glabrous or pubescent, solitary or clustered; individual flower pedicels slender, subtended by minute caducous bracts; calyx minutely 5-toothed, pubescent on the outer surface; petals spatulate, slightly united at base, margin ciliate; stamens exerted, about ¾ in. long; ovary hairy, long-stalked.

FRUIT. Ripe June–September, legume often abundant and conspicuous, borne on peduncles ¾–2 in. long; legume 2–4 in. long, 1–1¼ in. wide; margin thick, straight or irregularly contracted or curved; apex rounded and usually short-pointed; base round or oblique and short-stipitate; valves much flattened, papery, thin, finely reticulate-veneined, glabrous; seeds compressed, narrow-obovoid, light brown, sometimes marked with oval depressions, length about ¼ in.

LEAVES. Solitary or fascicled, 1–2 in. long, petiolo and rachis pubescent, petiole ¼–1¼ in. long, sometimes with a solitary gland near the apex; pinnae 1–3 pairs, each pinna with 2–5 pairs of leaflets obovate to oblong, apex obliquely rounded to obtuse or retuse, often apiculate; base sessile or short-petiolulate; length ¼–½ in.; surface 2–3-nerved and reticulate-veneined, glabrous or pubescent, paler green on the lower surface.
PRESIDENT'S SEED BED:

The Christmas freeze of 1983 could be thought of as a mercy killing for those citrus orchards just limping along. The Texas A&M Experiment Station director of research, Dr. Chan Connolly, has concluded damage was 100%. Of 78,000 acres of citrus, less than 40,000 acres were worth pruning. The rest should have been bulldozed and replanted. Replanting will cost $1,300 to 1,500 per acre with an investment of $5,000 to $6,000 per acre before turning a profit.

There well may be a big fruit basket turnover. New growers are likely to buy in as those in the citrus business get out. The freeze may act as a hint to get into the fast lane. There was no doubt beneficial cultural practices can enhance the future of the citrus industry.

The "Valley" image includes citrus. Results of my surveys over the past ten years show favor for citrus groves over new subdivisions and mobile home parks. I don't think we're talking about retrenchment, but quality of living.

I believe a good economic return is still out there. For production and price, nothing is any better in the farming game than citrus on small acreages. One cannot grow cotton on ten acres. Since the freeze came at the low point of grapefruit prices, some may be thinking of switching to oranges. In my opinion, it would be ill-advised to move over to oranges. Grapefruit is still traditionally the crop of the "Valley".

(Erratum in President's remarks of the July issue: the meeting stated as taking place on 20 July took place on 06 July.)

TREASURER'S ACCOUNT:

As of 06 August 1984, the Native Plant Project has a balance of $1,144.60. The number of members has reached 70. If you know of a good project for membership or have a membership list of a garden or plant related group, send the names and addresses to the editorial address on this issue. A brochure and letter will be sent to any name provided.

FRUIT USAGE AND DISPERAL BY WILDLIFE

Fruits vary in energy content, sweetness/tartness, lipid content, seed size, and length of time on plant. Color advertises ripeness. Seeds mature before fruit ripens.

Summer fruits are sweet, near the ground, and mostly with small seeds. Birds ignore in favor of insect protein to feed young. Large mammals eat the fruit and disperse the undigested seeds; small mammals eat the seeds. Birds do better at dispersing and spreading out the seeds since many fructivores cannot digest seeds.

Fall fruits are rarely cultivated, not sweet, and high in lipid content. Thus, they are favored by birds preparing for migration. Fruits high in lipid content rot quickly. Persistent, low-lipid, Autumn fruits are dispersed by north-bound migrants in Spring.

A good project for NPP members would be classifying native fruits in similar categories and listing the wildlife which feed on and disperse the seeds of different species. Parallel to this article, member Dave Junkin demonstrated how white-footed mice take advantage of concentrations of Sabal palm seeds as a food source.

BOOK REVIEWS:

Texas Wildflowers

Would a member volunteer to write one review for all the Texas wildflower books with a eye towards which is most useful here?

Ajlvsqi, Geya. 1984. Wildflowers of Texas. Shearer Publishing, Bryan. 414 pp. Some "370 or so" wildflowers were selected from the "over 5,000 species of flowering plants listed for the state." "Only the most common and the showiest herbaceous species were chosen." "A plant must occur over a large portion of the state, cover a long bloom period, or be very common in its area."

Ham, Hal. 1984. South Texas wildflowers: A collection I. Texas A&I University, 79 pp., $5.95 ($7.25 by mail, including tax and postage, from the John E. Conner Museum, TAMIU, Kingsville 78363). It "includes 85 species or color phases of common wildflowers found in this (?) region. ... It is quite affordable, yet its highly detailed color plates and its organization will make identification easy," says Jimmie Piquet, Conner Museum director.

Wells, Mary Motz, and Howard S. Irwin. 1961. Roadside flowers of Texas. Univ. Texas Press, Austin. 295 pp., paper. The question is, do the above complement or replace the old standard?

TEXAS WILDFLOWERS by Campbell and Lynn Loughmiller. Published by University of Texas Press, P.O. Box 7819, Austin, TX 78712. 271 Pages. Price $10.95. Paperback.

From the Big Bend to the Big Thicket, from the Panhandle to the Rio Grande Valley, Texas is blessed with a dazzling array of wildflowers. Of the many species that adorn the state, "Texas Wildflowers" provides clear and concise descriptions for more than 300, complemented by 381 stunning fullcolor photographs. Not only the most prevalent species but also rare and unusual plants of startling beauty are illustrated and described.

For more than three decades Campbell and Lynn Loughmiller have photographed the wildflowers of Texas, and their most exquisite photographs are reproduced here. The loveliest flowers from all regions of the state are represented, from the graceful calopogon orchid of the Big Thicket to the surprisingly delicate blooms of the Trans-Pecos Cacti.

Scientifically accurate descriptions of wildflowers from seventy-three plant families are presented in clear and readable language. In addition to herbaceous plants, many species of cacti and a wide variety of flowering trees, shrubs, and vines are described. Useful glossaries illustrate the parts of the flower and introduce lay readers to the scientific terminology commonly applied to these flowering plants.

Devoted naturalists Campbell and Lynn Loughmiller have coauthored four books, among them the popular "Big Thicket Legacy". Campbell Loughmiller is past president of the Texas chapter of the Nature Conservancy and a current board member of the Texas Conservation Council.
Native Plant Project Seed Collection

This list includes all seeds catalogued into the Native Plant Project seed collection. Several others from as yet unidentified species await cataloguing. The collection has grown by over thirty species — all collected by one person — added since the July meeting. Many more are needed — remember that Santa Ana N.W.R. alone has about 450 plant species — so we are just getting started. This list will be the basis for categorized or alphabetical lists when redone, perhaps by computer, in the near future.

1. Guayacan, Guaiacum angustifolium
2. Indian Hawthorn, Raphiolepis indica
3. Mexican Torchwood, Amyris madrensis
4. Mexican Blepharodes, Xylosma blepharodes
5. Chinese Tallow Tree, Sapium sebiferum
6. Manzana, Malpighia glabra
7. Mexican Washingtonia, Washingtonia robusta
8. Velvet-leaf Mallow, Wissadula amplissima
9. Ground Cherry, Physalis sp.
10. Chili piquin, Capsicum frutescens
11. Flower Fence, Caesalpinia pulcherrima
12. Coral Bean, Erythrina herbacea
13. Crape-Myrtle, Lagerstroemia indica
14. Alamo Vine, Ipomoea disecta
15. Hogplum, Colubrina texana
16. Catclaw Mimosa, Mimosa biuncifera
17. Powderpuff, Mimosa strigillosa
18. Mexican Poinciana, Caesalpinia mexicana
19. Montezuma Baldcypress, Taxodium mucronatum
20. Sugarberry, Celtis laevigata
21. Tenaza, Pithecellobium pallerens
22. Snake-eyes, Phaulothamnus spinoscescens
23. Texas Kidneywood, Eysenhardtia texana
24. Blackbrush, Acacia rigidula
25. Dwarf Screw-bean, Prosopis reptans
26. Texas Huiscach, Acacia smallii
27. Snailseed, Cocculus diversifolius
28. Butterfly-bush, Buddleja sessiliflora
29. Mescal Bean, Sophora secundiflora
30. Soapberry, Sapindus saponaria var. drummondii
31. Anaqua, Echetia anacua
32. Chapote, Diospyros texana
33. Guaje, Leucaena pulverulenta
34. Texas Ebony, Pithecellobium flexicaule
35. Wright's Acacia, Acacia wrightii
36. Texas Sabal, Sabal texana
37. Anacahuita, Cordia boissieri
38. Nipple Mamillaria, Mamillaria hemisphaerica
39. Granjeno, Celtis pallida
40. Texas Baby Bonnets, Coursetia axillaris
41. White Popinac, Leucaena leucocephala
42. Colima, Zanthoxylum fagara
43. Vasey Adelia, Adelia vaseyi
44. Rio Grande Ash, Fraxinus berlandieri
45. Lantana, Lantana sp.
46. Heartleaf Hibiscus, Hibiscus cardiophyllus
47. Rattlebusch, Sesbania drummondii
48. Desert Olive, Foresteria angustifolia
49. Retama, Parkinsonia aculeata
50. Lotebush, Ziziphus obtusifolia
51. Texas nightshade, Solanum triquetrum
52. Southern Pepperweed, Lepidium austrinum
53. Tropical Sage, Salvia coccineum
54. Catchweed Bedstraw, Galium aparine
55. Britton sedge, Carex brittonia
56. Texas Thistle, Cirsium texanum
57. Common Sunflower, Helianthus annus
58. Brasil, Condalia hookeri
59. Mesquite, Prosopis glandulosa
60. Black Mimosa, Mimosa pigra
61. Soth Thistle, Sonchus ciceraceus
62. Trompillo, Solanum elaeagnifolium
63. Buffelgrass, Cenchrus
64. Johnson Grass, Sorghum halepense
65. Sorghum, Sorghum bicolor
66. Maize, Zea mays
67. Cotton, Gossypium hirsutum
68. Trecul Yucca, Yucca triculeana
69. Ivy Treebine, Cissus incisa
70. Beach Morning Glory, Ipomoea stolonifera
71. Goatafoot Morning Glory, Ipomoea pes-caprae
72. Morning Glory, Ipomoea sp.

Continued on p. 10.
SABAL REVEGETATION AT BOSCAJE DE LA PALMA

Nancy M. Gilbertson, Native Plant Project

Boscaje de la Palma is a unit of the Rio Grande Valley National Wildlife Refuge located on the Rio Grande southeast of Brownsville. It is near, but separated from the Audubon Sabal Palm Grove. They do share a dry resaca.

Sabal palm seedlings are being planted in approximately 200 acres of an abandoned sugarcane field at Boscaje de la Palma to return the area to the palm-dominated jungle it once was. Sabal seeds were also planted in March at the Garza-Cavazos Unit located on the Rio Grande southeast of La Paloma (Cameron County) within the historic Sabal palm range.

Volunteers are needed to collect Sabal seeds as well as other native seeds such as Texas Ebony, Texas Persimmon, Anaqua, Tepeuaje, Granjeno, Brasil, Wright's Acacia, and Guayacan. Most of these seeds are ready to pick now (August). Sabal and Texas Ebony are collected in the fall and winter. Many seeds come from trees planted in yards. People can also volunteer to plant the seeds or seedlings when the refuge needs to revegetate a new area. People can help by collecting and bringing the seed to the refuge office. Sabal seed and seedling planting is scheduled according to the amount of seeds on hand or the size and amount of seedlings ready for planting. The best way to find out when to volunteer to help plant is to give the refuge a call.

THE AUDUBON SABAL PALM GROVE SANCTUARY

David R. Blankinship
National Audubon Society

As you already know, Lloyd Bletsch, Native Plant Project director, has resigned as manager of the sanctuary. He spent the Summer "camping" on Isle Royale National Park in Michigan.

The National Audubon Society Board of Directors has decided to reduce the manager position to half-time. It was decided to close the sanctuary during the Summer months when visitors are few and open for six months during the cooler period with a full-time manager. We are required by our deed restrictions to have a staff member present when anyone is visiting the grove. I regret the loss of the full-time manager position, but some other sanctuaries were closed out completely.

The Audubon staff is currently reviewing Lloyd's very detailed management plan for the sanctuary. We expect to continue with a limited visitation program, revegetating cleared portions of the sanctuary and maintenance of the resaca. Ernest Ortiz is the Society's warden for the sanctuary and has taken a more active role since Lloyd's departure. He has planted more than half of the nursery stock Lloyd had on hand and is now involved in repair of the observation blind at the resaca.

The sanctuary is closed to visitors for the season. We have allowed a few groups to visit the sanctuary with advance arrangement through my office (512-729-5649, 721 Pine, Rockport 78382). An admission fee will be charged for the sanctuary as is the policy at most Audubon sanctuaries over the country. Sanctuaries cost money to operate. Although a definite date for reopening the sanctuary has not been set, it will likely be in November which allows the six-month period to extend through most of the peak Spring birding.

Editor's note: This report was extracted from a letter from the writer.
SABAL TEXANA PALMS IN TEXAS STATE PARKS AND WILDLIFE AREAS

Gary Waggener
Native Plant Project

Not much information is available on Sabal texana palms on State Areas. The Wildlife Division of the Texas Parks and Wildlife Department owns the Las Palomas Wildlife Management Area which is located in the four counties of the lower Rio Grande Valley. There are 12 different Units and only one has Sabal. This area, the Voshell Unit, south of the Brownsville airport, has several palm trees, but there has never been an inventory to determine their status.

There are also a few Sabals located on the Resaca de la Palma Park Site, west of Brownsville. This area is owned by the Parks Division and these palm trees have not been inventoried either to my knowledge.

Texas Parks and Wildlife Department is not planning to plant any Sabals in the near future (3-5 years) as we are concentrating on brush species that are utilized by nesting white-winged doves. TPWD has also not done any germination work. TPWD is currently working with Mr. George Humes of Griffin and Brand, and he has several hundred Sabal palms that he is growing in a greenhouse for a rancher in Starr County.

Editor's note: The author felt there was little useful information in this note. But, can it be a springboard for Native Plant Project members to volunteer to inventory, collect seeds, raise seedlings, and/or plant seeds or seedlings in these areas? Even one acre of palm forest regeneration is a highly significant increase.

EFFECTS OF THE CHRISTMAS FREEZE ON PALMS AT KINGSVILLE

Henry N. LeHouerou, D. Sc.
Caesar Kleberg Wildlife Research Institute

I have been studying the effects of the Christmas freeze on plants and vegetation in south Texas since January last. The temperature in Kingsville went down to 10°F (-12°C) on 25 December morning (1983). The probability of getting such a temperature in any given year has not been calculated as yet, but it probably lies between 1 and 2% at Kingsville, as estimated from a first glance at the records.

Among the common palms, the order of increasing sensitivity to frost I have observed at Kingsville is the following:

- Chamaerops humilis
- Trachycarpus fortunei
- Sabal texana
- Washingtonia filifera
- Livistonia chinensis
- Phoenix dactylifera
- Phoenix canariensis
- Washingtonia robusta
- Arecastrum romanoffianum

*European fan palm
Chinese windmill palm
Texas Sabal palm
California Washingtonia
Chinese fan palm
Date palm
Canary Island date palm
Mexican Washingtonia
Queen palm

Virtually unaffected
Virtually unaffected
Some leaf damage
Severe leaf damage
Very severe leaf damage
Most leaves killed
All leaves killed; some trees killed
Most trees killed

This study is not finished yet as the final rate of survival cannot be measured safely before the end of this summer. This study will be published, probably in early 1985.

Editor's note: The common names were inserted by the editor for the use of those who do not know the scientific names. Note the same species did better in Kingsville at lower temperatures than in Hidalgo County!
RIO GRANDE "VALLEY" CHRISTMAS FREEZE PALM SURVIVAL

Joe Ideker
Native Plant Project

After the Christmas freeze of 25 December 1983, damage to the various native and exotic vegetation was compared. This report reviews survivability of six species of palms. Sabal is native to the Rio Grande "Valley", Washingtonia filifera to southern California, Washingtonia robusta to Baja California, Phoenix canariensis to the Canary Islands, Phoenix dactylifera to West Asia and North Africa, and Arecastrum to Brasil.

During April 1984, two palm survival surveys were conducted. The intent was to repeat the surveys monthly to determine if more recovered, but shortly after the initial surveys, hundreds of palms, especially Washingtonia robusta, along the highways were cut down -- dead or alive. The living palms were removed on the grounds that they were too close to the driving lanes and constituted a traffic hazard.

Methods. Surveys were conducted by driving along highways and counting palms with and without a green frond(s) showing. Stops were made when palm numbers required halting to complete counts or identifications. Palms lacking a green frond were usually dead. Small Washingtonias too short for the trunk to be clearly visible were omitted. All palms of the six species listed in Table 1 recognizable and visible from the highway were included. Each route was about 20 miles long.

The West route was run on a single afternoon from Edinburg west on Texas Highway 107, south on Shary Road (FM 494), west on FM 495, south on Texas Highway 107, plus a route along certain Mission streets previously used to check freeze damage to vegetation. The East route was run in segments on various days as time permitted from Edinburg north on 6th Avenue from McIntyre north to Schunior Street, east on Schunior (FM 2128) to Alamo Road (FM 907), south on Alamo Road through the city of Alamo to U.S. Highway 281, east and south to Santa Ana National Wildlife Refuge. All palms on Santa Ana NWR were included.

Results. Counts of surviving and dead palms appear in Table 1. To be cont.

Table 1. Palms surviving the Christmas freeze of 1983 as indicated by presence of a green frond during the survey.

<table>
<thead>
<tr>
<th>Species</th>
<th>Edinburg/Mission alive</th>
<th>Edinburg/Mission dead</th>
<th>Edinburg/SANWR alive</th>
<th>Edinburg/SANWR dead</th>
<th>Combined alive</th>
<th>Combined dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabal texana</td>
<td>22</td>
<td>22</td>
<td>100</td>
<td>26</td>
<td>26**100</td>
<td>48</td>
</tr>
<tr>
<td>Texas Sabal Palm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phoenix canariensis</td>
<td>247</td>
<td>255</td>
<td>96.9</td>
<td>237</td>
<td>241 98.3</td>
<td>484</td>
</tr>
<tr>
<td>Canary Island Date Palm</td>
<td>8</td>
<td>8</td>
<td>77.8</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Washingtonia filifera</td>
<td>363</td>
<td>453</td>
<td>80.1</td>
<td>266</td>
<td>284 93.7</td>
<td>629</td>
</tr>
<tr>
<td>California Washington</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>18</td>
<td>18</td>
<td>108</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>332</td>
<td>1219</td>
<td>27.2</td>
<td>169</td>
<td>494 34.2</td>
<td>501</td>
</tr>
<tr>
<td>Mexican Washingtonia</td>
<td>887</td>
<td>325</td>
<td>37.4</td>
<td>10</td>
<td>40 25.0</td>
<td>16</td>
</tr>
<tr>
<td>Phoenix dactylifera</td>
<td>14</td>
<td>14</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Arecastrum romanzantium</td>
<td>0/143</td>
<td>143</td>
<td>0</td>
<td>0/48</td>
<td>48 0</td>
<td>0/191</td>
</tr>
<tr>
<td>Queen Palm during survey</td>
<td>1/142</td>
<td>143</td>
<td>06.9</td>
<td>2/46</td>
<td>48 0.42</td>
<td>3/188</td>
</tr>
</tbody>
</table>

* % surviving

** Sabal texana seedlings at Rio Grande Valley National Wildlife Refuge: 343 of 343 also survived.
Answers to July puzzle.

1. Allthorn
2. Anacahuita
3. Anaqua
4. Barreta
 (Should be Baretta)
5. Brasil
6. Catclaw
7. Cedar Elm
8. Genizo
9. Colima
10. Coyotillo
11. Granjeno
12. Guajillo
13. Guayacan
14. Huisache
15. La Coma
16. Lantana
17. Lotebush
18. Mesquite
19. Montezuma Bald Cypress
20. Nopal
21. Retama
22. Rio Grande Ash
23. Sabal
24. Snakeeyes
25. Soapberry
26. Sugarberry
27. Tasajillo
28. Tepeguaje
29. Texas Ebony
30. Texas Persimmon
31. Wolfberry

Wrong answers = alien exotics.

1. Banana
2. Bean
3. Date
4. Fig
5. Peach
6. Plum
7. Sego
8. Tulip
9. Washingtonia

Continued from page 6.

78. Sea Oats, Uniola paniculata
Cucumber
Cantaloupe, Cucumis melo
Tomato, Lycopersicon esculentum
Peach, Prunus persica
Plum, Prunus americana?
Common Apple, Malus pumila
Mandarin (Tangerine), Citrus sp.
Lemon, Citrus limonia
Nopal Prickly Pear, Opuntia lindheimeri.

Spaces indicate unidentified species.
Unnumbered species are uncataloged or unprocessed.

HOW MANY NATIVE PLANTS CAN YOU CIRCLE?

AMYRISSISALMOMLO
GABUMELIAMIMOSAH
ACACIANEBRASILGUA
VICENZOAABALONUI
ENCINOPALOVERDE
SCHAPOTETORERIYA
BLACKBRUSHIBBISC
SCREWBEANLSAUZA
PRIVYTREEBINEABI
FASTERFRESNORRIL
DEVILSCALWROSANL
YUCCAPALOBLANCOO

Answers read horizontally from left to right or vertically from top to bottom for ease.

The Sabal
Volume 7, Number 2

P.O. Box 1433
Edinburg, TX 78540-1433

Bring me to the meeting on Friday.